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1 Abstract
GCode is an antiquated interface that lies between machine users (and planning algorithms) and
low-level controllers. It prevents innovations to machine building that would cross the boundary
between high- and low-level planning and control tasks, it makes it more difficult to invent new
machines, and harder to train new machine builders and users. This thesis aims to replace GCode
in two steps.

First, I develop and implement a distributed systems interconnect model that re-casts machine
controllers as networked systems that are modular across hardware and software. This involves
networking over heterogeneous links, developing clock synchronization routines, and writing
lightweight transport and serialization layers. I develop a distributed name service (to automati-
cally discover configurations) and functional discovery services (to automatically generate inter-
faces). Second, I develop a series of machine control libraries and applications within this model.
This involves developing a flexible motion controller that can interface with process models, de-
veloping suitable intermediate representations of motion for distributed systems, and managing
distributed data flows for loop closing at multiple levels.

To show the viability and promise of these contributions, I deploy them in three experimental
systems. (1) A flexible motion controller that performs across a heterogeneity of mechanical ar-
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chitectures, automatically tuning kinematic models, (2) A 3D Printer that can autonomously learn
its own optimal control parameters by modeling material properties, and (3) a CNC Router that
autonomously learns feeds and speeds for new tools and materials.

In these formulations, machine controllers are no longer black boxes; they are distributed algo-
rithms made of recognizable design patterns familiar to most contemporary programmers and
engineers, regardless of domain. With successful industrial adoption, this paradigm will enable
the next generation’s engineers and scientists to rapidly invent, modify and deploy novel machine
systems as they work through the next decades’ most pressing issues.

2 Goals or Problem Statement
2.1 Making, Maintaining and Using Machines is Difficult
Machine building is a core competency for our industrial society, and is becoming increasingly
democratized. Engineering firms have long used digital fabrication machines to prototype their
outputs, and are increasingly building machines in-house for automation or process-specific tasks.
Alongside these engineers are hobbyists, STEM educators, and scientists who all use machines to
learn - about craft, about maths and artistry, and about our world.

The democratization of digital fabrication has led to a trend where machinery is being developed
and deployed by individuals whose main concern is not machine building (or use) itself, as was
formerly the case where the purchase of a new machine normally involved also hiring a full-
time operator for that machine, and machines were developed only by specialist machine-build-
ing firms.

For example, educators and students are using machines as one of many tools in the classroom [1],
[2], craftspeople are using them as components of larger workflows [3], and scientists are using
them to automate their laboratory work [4], [5].

This motivates the central question in this thesis: how can we make the making, maintenance
and use of machines simpler? In particular, I am interested in replacing a pervasive, niche
intermediary representation of machine control (GCode) with more interpretible and extensible
representations that are intuitive (based on physics) and authored in an inspectable, easily mod-
ified systems architecture.
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Machine building necessarily covers a range of disciplines from electrical engineering to computer
science and controls - not to mention mechanical design. Systems integration across these disci-
plines is the name of the game, but in the state of the art this core task is made cumbersome by the
continued use of historical control architectures that were originally developed for unchanging,
feed-forward industrial equipment.

This historical architecture places real-time control tasks underneath a low-level task represen-
tation (GCode), and hides configurations in firmwares¹ that are difficult to modify - either acci-

¹We call the low-level computer codes that run on micrcontrollers ‘Firmware’ - the name reflects the difficulty in
changing it, and its closeness to hardware. Firmwares typically run on small computing environments (which today
means MHz and MBs), vs. Software which normally runs on i.e. a laptop, on top of an operating system. Firmwares
are an important component in any hardware system, since they allow programmers to have tight control over
their program’s timing. Operating systems and high-level language interpreters (on the other hand) sometimes
interrupt program execution to switch threads or run garbage collection routines.

dentally (because firmware is naturally less inspectible than i.e. software written in a scripting
language) or intentionally (because it is treated as proprietary). This means that it is difficult to re-
use machine components between tasks, we have to develop new circuits and firmwares in order
to accomplish new tasks, and we cannot readily access low-level controller states even when they
have large ramifications for our machines’ behaviour.

The pervasive use of GCode (and the way it relates to path planning softwares), also makes it dif-
ficult for anyone to use machines because it requires that users develop extremely specific, often
idiosyncratic settings for each new material or machine they use.
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Figure 1:  A systems overview of the contributions made in this thesis. I refactor a mostly feed-
forward workflow (see Figure 3) and replace parameter selection (see Section 3.3) with online
optimization (see Section 5.1). In this architecture, machines can continuously improve datasets

and update models of their own physics, which they use in order to control their outputs.

In this thesis I continue an historical arc of CBA research based on machine virtualization, revisit-
ing key components of machine control architecture in an effort to make the making of machines
more flexible and fluid, and the usage of machines more intuitive. First, I develop a networked con-
trol architecture as a series of modular components that can be rapidly integrated using patterns
familiar to almost anyone who can write a computer program. Those patterns allow me to move a
core machine control task off of the small, slow computer chips that run low-level firmwares and
into a high-performance modern parallel computing environment (made accessible by machine
learning researchers). In doing so, I can then refactor machine control from low-level, feed-for-
ward instruction following, to higher level model-based approaches that are more reflective of
real-world physics, and that are more robust, easier to get up and running when machines or ma-
terials are modified, and are more performant.
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As I discuss in Section 3.3.a, Section 3.3.b and Section 3.3.c, much of the work that machine users
need to do to operate digital fabrication equipment is an implicit optimization. In this thesis, I try
to make that optimization explicit, and base its operation on models that are generated in-situ on
the machines in question.

2.2 Machines are Thoughtless
In the state of the art, digital fabrication equipment² does not think about what it is do-
ing, nor can it tell a user what it is capable of, anticipate errors that may arise from a particular

²In this thesis, I will take Digital Fabrication Equipment to mean CNC Machines, 3D Printers or other direct-
write fabrication equipment (not including automation equipment more broadly).

program, or be easily re-configured to do a task that its original programmers did not imagine. In-
stead, most machines programmed to carry out very simple instructions (GCodes, see Section 3.1)
very reliably. They leave high level thinking to offline algorithms and when mismatches arise be-
tween pre-defined plans and real conditions they either fail or throw errors. For all of its advance,
most digital fabrication seems about as sophisticated as the injket printing we are all familiar
with: sometimes straightforward and unsurprising, or else error prone and frustrating, but never
enlightening.

Figure 2:  Most of the world’s 3D Printers and CNC Milling machines’ realtime controllers know
very little about what they are doing, they simply consume and execute series’ of low-level in-
structions called GCodes. Those codes are generated in software that knows little about the ma-

chine (and has no way to verify what it does know).
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Figure 3:  GCodes are written by upstream softwares known as CAM tool (for Computer Aided
Manufacturing). In the 3D printing world, these tools are known as “slicers” since they typically
process parts layer-by-layer. Since there is no feedback from machines to CAM tools, they must
be carefully configured by machine users in order for the whole process to work. This works
reasonably well when machines or materials don’t change very often, but makes it is difficult to
debug when things go wrong (since parameters aren’t related to any real physics) and it presents a
challenge when new materials or machines are developed. CNC Milling Machines, where multiple
cutting tools are used on any given job, configuring CAM parameters is a full-time job because

each new tool requires careful consideration.

For example, a CNC Milling Machine itself has no ‘knowledge’ of the physics of metal cutting,
chip formation (see Figure 8), or structural resonances even though these physics govern how a
block of aluminum down into a desired shape. In the same way, a 3D printer knows nothing of
the rheology involved in heating, squeezing and carefully depositing layers of plastics in order to
incrementally build 3D parts (see Figure 6). It is difficult to say whether any computer system has
‘knowledge’ of anything; in this case I mean that our machines do not use any information about
the material physics (and very little about their own physics) they are working with while they
operate³.

³Where state-of-the-art machines do use sensing and feedback it is normally relegated to one subsystem: for
example most industrial machines have encoders for positional feedback on each axis, and some high-precision
equipment measures temperature along each axis - but these are used in the subsystem that positions that respec-
tive axis. In this thesis, I try to close a longer loop across the machines’ global control controller, using matched
computational models of the whole system (process and motion).

In order to operate succesfully, machines need to have some understanding of these physics em-
bedded into the low-level instructions they do receive, but those are developed in CAM tools that
only encode them as heuristics and as abstract parameters that don’t have direct correlations to
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process physics (see Section 3.3). This poses a problem for machine builders (who need to care-
fully tune their motion systems) and machine users (who need to intuitively tune a slew of CAM
parameters). It also means that many machines do not operate near their real world optimal limits
(since hand-tuned parameters tend to leave considerable safety margins), leaving some perfor-
mance on the table.

2.3 Machines are Poorly Represented
While most machines don’t know what they are doing, most machine programmers have a hard
time ascertaining and changing what they are. A more precise way to say this is that machine
representations are lossy - they are also often misaligned with reality, and difficult to correct.

At some levels, this is a crushingly simple problem: when we issue a code to G1 X100 (G1 basically
means means “move to” - see Listing 1 for an example of a complete GCode program), we need
our mental model of the machine (which axis is “X”) to align with the controller’s model (and
wiring diagram).

That configuration is normally locked away in the controller’s firmware: we can’t query it to see
which plug corresponds to which axis, and if we’re not using an open source control board we
probably can’t modify it or read the source code to figure it out. It is simple enough to test when
you are physically colocated with the machine in question, it causes all kinds of issues for pro-
prietors of CAM software who need to write GCode for a heterogeneity of machines.

It also causes problems for i.e. educators, hobbyists, and scientists who want to re-purpose off-the-
shelf controllers for their own inventions, especially if their machines deploy nonlinear or novel
kinematics. One common result of this problem is to find machines in the wild whose controllers
are convinced that they are a 3D Printer when in reality they are i.e. a gel extruder [6] or a liquid
handling robot [7], or cases where authors have had to develop their own adhoc control systems
(rather than re-using available designs) [8], [9].

What a machine builder normally wants is a computational representation of their machine that
is aligned with reality - this is half semantics (any axis is “X” if we declare it to be) and half tun-
ing and model fitting (how are the kinematics arranged, how much torque is available, and what
happens if we apply some amount of it over the course of one second?).

In this thesis, I try contribute work that automatically generates low-level interfaces to modular
machine hardware in Section 5.4.b - this ensures that machine builders see consistent device ab-
straction layers when they are programming. On top of that, MAXL (Section 5.1) provides some
simple interfaces with which machine builders can describe their systems’ kinematics (see Sec-
tion 5.1.a), and uses an intermediate representation for motion that enables us to rapidly edit
kinematic descriptions without recompiling and re-flashing device firmwares.

I am proposing to evaluate these systems by working with machine builders in a plotter-building
workshop (Section 5.1.b) to take place this coming January.
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2.4 Feedback Machine Systems
The central issue with most state of the art machines is that they are feed-forward devices that
contain a lot of built in assumptions about what they are, what materials they will use, and how
they should be controlled. Success in this thesis’ endeavour would mean that most of the world’s
machines would be built and controlled using the principle of feedback.

In building with feedback I mean using systems (like those prototyped in this thesis) that can
automatically generate computational representations of their real instantiations. There are two
main aspects to this.

The first is to generate the very nuts-and-bolts communications interfaces that we use to connect
to modular hardware (I discuss network interfaces in Section 5.4 and software interfaces in Sec-
tion 5.4.b). This could prevent the laundry list of errors that arise when a programmer’s model of
the hardware is mismatched to the real world, and tools for reflective programming⁴ may make
it easier to write flexible software for heterogeneous hardware.

⁴By reflective programming I mean approaches that are introspective: that check available resources at runtime
before using them. In a way, this is synonymous with feedback programming - codes that look at codes.

The second is the generation of models for motion (see Section 5.1, Section 5.1.b and Section 5.1.a)
and for process physics (see Section 5.2.c). This should culminate in the (mostly) automatic gen-
eration of any given machine’s digital twin.

In controlling with feedback I mean generating control algorithms that use automatically aligned
models to optimize machine motion and process outputs (motor torques, heater voltages, etc). I
discuss this in detail in Section 5.1 and reduce it to practice in the Rheo Printer (Section 5.2) with
the key result that the use of models allow us to greatly reduce the space of input parameters that
users need to provide (Section 5.2.d). This is effectively the outer loop pictured in Figure 1: we use
sensor-equipped machines to fit models for process and motion, which we then use to optimize
controller outputs. I have a proof-of-concept for this approach with the Rheo-Printer that I am
aiming to deploy and extend for continous (layer-by-layer) learning (i.e. building and updating
models as a print progresses). I am also proposing to extend this technique to a second machine
and process in CNC Routing (Section 5.3), where I hope to show that the same approach can help
us cut parts quickly in many materials while avoiding resonant chatter.

Taken together, these contributions will enable machine builders across lab automation, industry,
STEM and in the arts to make machines that are more rapidly composable, more robust to change,
and more available for hacking. Machines developed using these strategies should be easier to
operate and tune, harder to break, and easier to integrate into larger workflows.

2.5 Why the CBA, and MAS
The Center for Bits and Atoms has been the site of nearly two decades of machine-building re-
search and the birthplace of numerous machine companies. Our sponsors include companies like
Hurco (who make machine tools), Autodesk and Solidworks (who make CAM software), and NIST
(who set measurement standards in the USA). We also help to coordinate a global network of Fab
Labs, where machine building is taught to beginner hardware engineers [10]. At MIT, we teach
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a machine building class [11] and an intro to fabrication class [12]. This gives us unique insight
into the real-world problems faced by practitioners in the machine buiding disciplines - and users
of machines.

Machine building involves the merging of many disciplines: meche, ee, controls, modeling, and
in the case of this thesis also embedded networking, programming systems, high performance
computing - CBA has covered each of these domains in its history. Indeed, this thesis is essentially
one monster systems integration problem that I am enabled to do not because I am an expert in
any of the constituent disciplines, but because I have peers and friends who are nearby in the
CBA and MAS who can guide me in the right directions: for compiler and programming and op-
timization quandaries I talk to Erik Strand or Sean Hickey, for architectural insights and difficult
maths problems I talk to Quentin Bolsee, and for MechE and Circuit troubles I find Zach Fredin,
Miana Smith, Alfonso Parra Rubio, and Alan Han.

3 Background
I want to start with the a systems-level overview of the state of the art in practice as it pertains
especially to CNC Milling machines and FFF 3D Printers, starting with a primer on GCode (Sec-
tion 3.1), then comparing how state of the art CAM and Control relate to the physics they are
wrapped around (Section 3.3 and Section 3.3.c). Finally, I will take a broader look at background
for the optimization (Section 3.4), modelling (Section 3.5 and Section 3.6) and architectural (Sec-
tion 3.7) work that I do in this thesis.

I want to note again that many of the components of the systems I have developed as part of this
thesis are present in the literature: for example many models exist to explain the rheology of
FFF printing (Section 3.5) and to optimize motion (Section 3.4), but to my knowledge no-one has
assembled these all into one online system, and certainly these approaches are not today avail-
able in off-the-shelf solutions. The central contribution in this thesis (a controls framework that
combines process and motion optimization Section 5.1) is nowhere to be found in the literature.
I cannot verify that it has not been done internally by some commercial machine-building firm.

3.1 A Small GCode Primer
Understanding how GCode works, what niche it fills, why we might want to replace it (and why
it is so pervasive) is important background for this thesis. To that end, let’s look at a basic GCode
“program” that, for example, cuts a square out of a piece of stock using a router (a subtractive
tool).
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Listing 1:  An example GCode program that cuts a small square from a 1/8” piece of stock using
a CNC Router.

L01   G21                   ; use millimeters
L02   G28                   ; run the homing routine
L03   G92 X110 Y120 Z30     ; set current position to (110, 120, 30)
L04
L05   G0  X10 Y10 Z10 F6000 ; "rapid" in *units per minute*
L06
L07   M3  S5000             ; turn the spindle on, at 5000 RPM
L08
L09   G1  Z-3.5 F600        ; plunge from (10, 10, 10) to (10, 10, -3.5)
L10   G1  X20               ; draw a square, go to the right,
L11   G1  Y20               ; go backwards 10mm
L12   G1  X10               ; go to the left 10mm
L13   G1  Y10               ; go forwards 10mm
L14   G1  Z10               ; go up to Z10, exiting the material
L15
L16   M5                    ; stop the spindle
L17   G0  X110 Y120 Z30     ; return to the position after homing (at 6000)

Figure 4:  The actions (if properly configured) of the GCode snippet from Listing 1.
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GCode was developed around the same time (and in the same place) as programming languages,
compilers, and instruction sets. Programming languages allow software engineers to design and
describe algorithms without recourse to their actual implementation in low-level codes [13]
(handing that problem instead to a compiler), and compilers rely on instruction sets (ISAs) to
generate low-level codes without concern for how they are actually implemented in hardware
(see Figure 3).

GCode was meant to take the same place in machines, allowing machine programmers (formerly
machinists) to develop manufacturing routines that could be deployed on variable hardware [14].
This probably seemed like a good idea at the time, but it is stymied by two important facts.

Firstly, while there are only a few ISAs for compilers to contend with (and even then, a real homo-
geneity around x86 and ARM in practice), there are perhaps tens of thousands of unique GCode
interpreters each with a unique “flavor” of GCode. I diagram this relationship in Figure 3. For
example, in L10 above, we tell the machine to move the X axis 10mm to the right (from its previ-
ous position established in L05), but it is impossible to know from the code alone which motor-
controller is actually going to execute this move; there is a system configuration that is hidden
from us. This seems like a simple problem (simply write down the configurations, right?) but is a
major hurdle for companies like AutoDesk, whose CAM software (discussed next) must interface
to many machines, and needs to know exactly how (for example) the X axis moves relative to
the rest of the machine. The same problem is even more problematic for advanced machines, like
multi-DOF mill-turn “screw machines,” where most users result to programming jobs manually
(i.e. writing GCodes directly) - a clear failure of what is meant to be a low-level layer.

Secondly, physical processes themselves are also heterogeneous: even if we run the same job on
a machine thousands of time, each is bound to be different: cutting tools wear out, incoming
stocks are of slightly different sizes and compositions, external factors like heat soak and ambient
air temperature all change. Whereas computer science goes to great lengths to ensure the homo-
geneity of the lowest layers of its stack (the implementation of ISAs), it is simply not possible in
manufacturing to do the same. All the while, GCode provides no recourse to use real-time infor-
mation in the execution of manufacturing plans: if we want to describe an algorithm that controls
a machine intelligently based on physical measurements, GCodes are simply not an option.

GCode also contains a mixture of simple instructions like G1 (goto position) alongside larger sub-
programs like G28, a homing routine that may involve coordination of many of the machine’s
components.

3.2 Equivalent Codes using MAXL and OSAP
In the paradigm introduced in this thesis, the same program as presented above in Listing 1 is a
‘real’ program (a python script) rendered in Listing 2, and the homing subroutine is available for
inspection Listing 4.
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Listing 2:  The equivalent low-level program as the GCode presented in Listing 1, here written
using the python API presented by MAXL. While these are more verbose, they are semantically

meaningful and reduce hidden state.

await machine.home()
machine.set_current_position([110, 120, 30])
await machine.goto_now([10, 10, 10], target_rate = 100)

await spindle.await_rpm(5000)

await machine.goto_via_queue([10, 10, -3.5], target_rate = 10)
await machine.goto_via_queue([20, 10, -3.5], target_rate = 10)
await machine.goto_via_queue([20, 20, -3.5], target_rate = 10)
await machine.goto_via_queue([20, 10, -3.5], target_rate = 10)
await machine.goto_via_queue([10, 10, 10], target_rate = 10)

await spindle.await_rpm(0)

await machine.goto_now([110, 120, 30], target_rate = 100)

Listing 3:  Low level codes can be contained in higher order functions like this one, that presum-
ably contains much of the same logic as that rendered directly in Listing 2. Living in a complete
computing language means that we can readily add useful abstractions like this to our systems.

await machine.route_shape(svg = "target_file/file.svg", material = "plywood,
3.5mm")
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Listing 4:  This is MAXL’s internal logic for limit switches, itself composed of a mixture of MAXL
API calls and other hardware interfaces (to see how those are generated, see Section 5.4.b). Living
in python means that we can easily move between big system layers (like Listing 3) or simple

layers like this one.

  async def home(self, switch: Callable[[], Awaitable[Tuple[int, bool]]], rate:
float = 20, backoff: float = 10):

    # move towards the switch at <rate>
    self.goto_velocity(rate) 

    # await the switch signal 
    while True:
        time, limit = await switch()
        if limit:
            # get the DOF's position as reconciled with the limit switch's actual
trigger time 
            states = self.get_states_at_time(time)
            pos_at_hit = states[0] 
            # stop once we've hit the limit 
            await self.halt()
            break 
        else: 
            await asyncio.sleep(0)

    # backoff from the switch 
    await self.goto_pos_and_await(pos_at_hit + backoff)

Our codes are longer because they embed more information, and they are semantically meaning-
ful - for example, I haven’t had to use comments in the scripts above because the function names
themselves are human-readable. We can also easily describe dynamic or interactive controllers in
this paradigm, as is the case with the example below (Figure 5 and Listing 5), where we use CV
in conjunction with MAXL to ‘play’ a robot xylophone.
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Figure 5:  Click here for a video. In this demo, I worked with Quentin Bolsee who authored
a computer vision system that detects a user’s fingers above piano keys - that vision system is
integrated with a MAXL motion controller to position the hammer of a robotic xylophone (at left)
before the key is struck. MAXL’s flexibility allows us to generate complex machine systems like
the Rheo Printer (Section 5.2), or use a subset of the available components to build systems like
this. It also lets us generate interactive controllers that interface to more complex algorithms like

Quentin’s vision system in real time.
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Listing 5:  The key code snippet from an interactive robo-xylophone demo that I produced with
Quentin Bolsee as a part of HTMAA [12] Machine Week ‘24. In this snippet, Quentin opens a
connection to a separate python process (not figured) that calculates his fingers’ positions from a
video frame. That process sends commands to this snippet, which interfaces directly with MAXL

to control the machine hardware.

  async def handle_echo(reader, writer):
      print("Connected")

      stop_requested = False
      while True:
          data = await reader.read(100)
          if not data:
              break

          msg = pickle.loads(data)
          if msg.get("running", False):
              stop_requested = True
              break

          reply = {"ACK": True}
          writer.write(pickle.dumps(reply))
          await writer.drain()

          if "hit" in msg and msg["hit"]:
              using_a = True
              if "note" in msg:
                  p = note_to_pos(msg["note"])
                  pa = dof_a.get_position()
                  pb = dof_b.get_position()
                  if abs(pa-p) < abs(pb - p):
                      await dof_a.goto_pos_and_await(p)
                      using_a = True
                  else:
                      await dof_b.goto_pos_and_await(p)
                      using_a = False
              if using_a:
                  await fet_a.pulse_gate(0.85, 6)
              else:
                  await fet_b.pulse_gate(0.85, 6)
          else:
              if "note" in msg:
                  p = note_to_pos(msg["note"])
                  pa = dof_a.get_position()
                  pb = dof_b.get_position()
                  if abs(pa-p) < abs(pb - p):
                      await dof_a.goto_pos(p)
                  else:
                      await dof_b.goto_pos(p)

      writer.close()
      print("Close the connection")
      await writer.wait_closed()
      print("done")
      if stop_requested:
          flag_running.set()
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To a complete newcomer to both machines and programming, the comparison is kind of mute:
both are new codes, either of which would take some time to comprehend. But python (and pro-
gramming in general) is more of a lingua franca in science (and especially in the discipline of
controls) than GCode (which is a niche language we encouter only in the context of digital fabri-
cation equipment in particular). Python also lends itself to systems integration more readily: the
language is attached to a package manager [15] that contains some tens of thousands of libraries
including powerful machine learning algorithms (that I deploy in this thesis) and computer vi-
sion. The users we are interested in helping to develop new machines are probably “already here.”
Conversely, many machine users unwittingly begin to learn some principles of computing when
they learn how to read and write GCode - they could just as easily be learning the “real deal”
during their practice.

3.3 CAM: Parameters vs. Machine Control
In Section 2.2 I discussed how CAM (software used to generate machining plans: ‘slicers’ and
CNC Milling software) and control are separated in the state of the art.

It is worth mentioning that when someone learns how to make things with digital fabrication, much
of their effort is devoted to learning how to use CAM softwares. Each has its own quirks, but
most follow a similar pattern: a 3D file is imported and positioned in a virtual work volume, and
then various parameters are configured such that the software can generate a path plan (basically,
GCode) for the selected machine. Figure 7 and Figure 9 give examples of printing and milling
parameter sets respectively.

In this thesis I am trying to provide an interface between the two sides of machine operation
using physical models, but in the state of the art CAM tools make extensive use of parameters to
configure their behaviour. In this section I want to show that those parameters are often discon-
nected from the physics that governs machine behaviour and machine control.

3.3.a Direct Parameters vs. FFF Phenomenology
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Figure 6:  The physics of 3D printing is simple in principle (heat, then squish filament out of a noz-
zle) but can be complex in practice. Filament between the drive gears and nozzle exit compresses
before it extrudes, putting some phase lag in the system. The amount that extrudes is a function
of the chamber pressure, but also of the flow temperature and material properties. The actual flow
temperature is history dependent: if we have been extruding near the machine’s limit, melt flows
are normally colder than the nozzle’s measureable temperature (since the filament does not spend
much time in the heat zone). To add to all of this, filaments exhibit die swell - when they are ex-
truded at high pressures, they retain some memory of their previous width (as a 1.75mm diameter

rod) and try to expand back to that width as they cool, putting residual stresses in the print.
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Figure 7:  A screenshot of parameters available to tune an FFF print job, from PrusaSlicer [16].
The set which is displayed is incomplete; there is another page of parameters for extrusion tem-

perature, print cooling fan settings, and bed temperature.
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Let’s look at 3D Printing: users select some geometric parameters: layer height, track widths, ex-
ternal perimeter counts, and infill patterns and percentages. They also select speed parameters:
linear feed rates (how fast the nozzle moves in cartesian space) for different features: outside
perimeters, interior perimeters, etc. Finally, the temperatures: for the nozzle, for the print bed,
and (sometimes) for the chamber. These all relate directly to the machine instructions (how fast
to travel, how thick to make the layer, etc).

But the outcome of these plans is not related to machine instructions, it is related to the physics
of 3D Printing, which is mostly concerned with flow rates and temperature of the polymer melt
(see Figure 6 above) [17]. For example if we double the layer height but retain the same speeds we
effectively double the flowrate of the polymer melt: this has huge ramifications for the physics of
the process, but that is not reflected anywhere else in the parameter set. Changing print speeds to
reflect the new layer height would mean updating six other parameters (excluding those that can
be set by a percentage). Nor are those parameters related to longer-term outcomes like the result-
ing thermal history of the print’s inter-layer joints, which are a main indicator of part strength
[18]. Inversely, if we increase the nozzle temperature we often unlock more flow rate, but there
is no way to update print speeds as a function of temperature. Instead of having any knowledge
of print physics built into the slicer, users need to intuit how these many parameters will relate
to the machine’s operation.

3.3.b Direct Parameters vs. CNC Milling Phenomenology
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Figure 8:  The physics of maching are arguably more intense than their counterparts in FDM,
involving extreme shear rates, thermodynamics, tool life and geometry. The core of it is about chip
load, which depends on the ratio between spindle RPM and translational velocity. Cutting a chip
that is too big means too much cutter force (leading to broken tools and an underpowered motion
system), not enough chip load means that the physics becomes are rubbing dominated and tools

basically dull themselves to a shorter lifespan.
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Figure 9:  This is a screenshot of the parameters available to configure one cutting strategy (a 2D
Pocket) in Autodesk Fusion [19].

22



Figure 10:  These are just a few of the many CNC machining strategies available in one modern
CAM tool (Autodesk Fusion). Each strategy has some unique parameters to tune, though most re-

use a similar subset.

CAM for 3D Printing is at least simpler than CNC Machining because each job is one operation:
slice into layers, produce perimeters and then infill for each layer. A machining job can include
many (tens or hundreds) of different path planning strategies and tools for different geometric
features, each selected manually. For example a tightly toleranced hole may require the machinist
to select a purpose-made reamer, threaded features require threading tools, radiused or chamfered
corners require fillet or chamfer end-mills, etc. I show a selection of these strategies in Figure 10.

The physics of CNC milling is the physics of chip formation, which is mostly related to surface
speed (how fast the cutter edge is moving with respect to the material), and chip load. These are
both functions of the tool diameter, spindle RPM, as well as the machine’s linear traversal rate
(which are the parameters we set in most CAM tools). Chip formation then generates overall loads
on the machine’s structure that is related to the depth and width of the cut. Most complex of all in
CNC Machining is the issue of resonance: any machine has a given natural frequency and if chip
formation happens to excite the machine near that frequency, the whole system vibrates, causing
innaccuracies or even tool breakage.
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Milling parameters, then, are similar to FFF parameters: a user sets geometric and speed-related
parameters that are only indirectly related to the underlying process physics that govern the sys-
tem. Instead they are directly related to the low-level instructions (GCodes) that we send to the
machine.

Essentially, the state of the art workflows have users writing low-level parameters directly, rather
than describing high level goals or behaviours. This is akin to writing computer programs by directly
authoring assembly language.

3.3.c The Hidden Optimization
Expert CAM users know that process physics alone are not enough to intuit where a job’s para-
meters should be set: the machine’s physics also present constraints. Milling machines need to
be strong and stiff enough to handle generated loads without deflecting or vibrating, and print-
ers have limited top-end speeds and accelerations depending on their kinematic arrangements,
the flying mass of the end effector, etc. Printers also have a stiffness issue: when timing belts are
loaded rapidly they also vibrate - this limits how fast a perimeter can be printed without seeing
“ringing” artefacts in a printed part.

This is where we find perhaps the most eggregious hidden actor in the parameter tuning journey:
controller firmwares perform an optimization on the instructions they are given so as to avoid
issuing instructions to the hardware that would be impossible to achieve: instantaneous changes
in speed and direction, or instantaneous changes to i.e. flowrates, spindle speeds, etc. To make
things more complicated, this step needs to happen in a near real-time computing environment,
i.e. controller firmwares that are difficult to interrogate or modify.

Figure 11:  Machine controllers perform a real-time optimization of the speeds and feeds that are
requested of them in GCode files. This optimization is effectivley a speed scaling that prevents
excessive loads on the machines’ structure and motors according to pre-configured limits to ac-

celeration and velocity.

All of the physics we discussed are tightly coupled to the machine’s speed. If we slow the printer
down, we also need to slow down extrusion rate, and if we cannot extrude fast enough to pro-
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duce a track of a given width, we need to slow the printer down. This is handled easily enough
in printer firmware using proportional speeds, but extrusion is dynamic: we need to compress
the filament between the drive gears and the nozzle before we generate enough pressure to see
any flow. A somewhat recent advance in FFF printer firmwares is to compensate for compression
of the filament between the drive gears and the nozzle using an approach called linear advance
[20]. However - this is a firmware setting. Not all controllers allow this to be modified without
re-compiling a firmware, and those that do allow this need the slicer to tell them where to set
it. However, filament compression is not just dependent on the filament (whose stiffnesses vary
wildly), but on the printer design (some have better extruder designs than others). To add to the
complexity, maximal flow rates (which are often the key limiter to print speed [21]) are not even
dependent on the filament alone: they are a complex function of the extruder’s design, motor
torque, historical flowrate, hotend thermodynamics, etc.

With CNC milling, deccelerating into a corner can change chip size dramatically, but because we
cannot rapidly slow down spindle RPM (too much inertia!) we cannot simply scale the spindle
RPM as a function of machine speed. Instead, we simply have a lossy layer: where we may setup
a job to run at a particular chip size, some large proportion of the work might be done at much
lower speeds with a much smaller chip size⁵.

⁵Many readers will be familiar with High-Speed-Machining, a series of milling strategies developed somewhat
recently. These generate tool-paths that effectively minimize cornering radii for the majority of the work that they
do. These were a kind of magic when they were introduced, and were realizeable only when modern machine con-
trollers could readily handle the complexity of the instructions produced. It is my intuition that this insight was not
so much about maintaining high feedrates, but that the resulting geometries mean that more of the actual milling
time is spent at the target feedrate - i.e. tight corners, which produce feedrates lower than those set in parameters,
were minimized.

In the figure below, I show the actual feedrates realized by a classical motion solver (using trape-
zoids) under two conditions: one sets a target of 100mm/sec, the other targets 500mm/sec. We
would expect that the second is five times faster, but in reality it is only 14% faster because the
solver’s maximum acceleration is limits to the same maximum acceleration of 1000mm/sec^2 in
both cases. This is a simple example of what I mean by a lossy layer: the parameters that we set in
any given CAM tool are often not realized in practice, something that has stymied other authors
as they develop optimizations for milling machines [22].
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With 100mm/sec Feedrate With 500mm/sec Feedrate

Figure 12:  Here I show the result of two print layers that have been optimized by a trapezoidal
motion solver (the likes of which are present in most machine control firmwares). In both cases,
acceleration is limited to 1000mm/sec^2. At the left, we target 100mm/sec feedrate and the his-
togram shows that the resulting path is executed mostly at that feedrate. On the right, we target
500mm/sec, but see that this speed is never reached during the print: the job is acceleration dom-

inated and instead of seeing a 5x increase in speed, we realize only 14% increase.

Switching directions quickly is important for any machine, and machine builders have developed
novel kinematics to increase performance in this regard. One of which is CoreXY [23]. CoreXY
(and many other arrangements) is anisotropic in its physical speed and acceleration limits: it has to
move much less mass in the X direction than in Y - while it has just as much available motive force
in either direction. This means that a part’s orientation with respect to the machine’s kinematics
can be hugely important for overall print speed, as shown below in Figure 14. Slicers, however,
are unaware of this property, meaning that they can’t optimize print speeds by (for example)
changing the primary direction of an infill pattern.
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Figure 13:  Like many machines, CoreXY layouts have anisotropic dynamics. Both motors work
together to move the machine in X and in Y, but the moving mass in X (just the end effector) is

significantly lower than that in Y (which includes the end effector along with the y-beam).
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With Infill Misaligned to Anisotropic Acceler-
ation Limits

With Infill Aligned to Anisotropic Accelera-
tion Limits

Figure 14:  In this example, I show how a machine with 10x more command over its X-axis speed
can cut 2/3rds off of a print time by aligning infill with the dominant axis. On the left, I show a
speed histogram and heatmap for a print layer with infill in the Y axis, and at the right, the same

system with infill aligned on X.

Between this ‘hidden’ speeds optimization and parameters that are disconnected from process
physics, state of the art workflows for FFF printing and CNC machining have important compo-
nents spread across multiple disconnected systems. Some are implicit in CAM parameter space
and some are governed by the machine’s firmware. Getting a machine to operate successfully
involves the user aligning all of these settings intuitively, requiring them to implicitly under-
stand process physics physics and machine physics, but also to understand how parameters and
firmware configurations will translate into real-world operation of the machine.

3.4 Constrained Optimization and Differentiable Simulation
State of the art machine workflows are implicit constrained optimization problems: users want to
make their parts precisely and quickly, but they are limited by process physics, material properties,
and machine dynamics. As I’ve explained, this optimization is currently distributed across two
disconnected systems (CAM and the Controller), and is articulated somewhat awkwardly with
indirect parameters leading to difficult-to-discern differences in outcome. The optimization is not
made explicit anywhere, nor are the physics written down anywhere - people rely on heuristics
above all and the whole process is feed forward: we tune systems until they break.
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In this thesis I propose to replace big parts of these workflows with models and numerical opti-
mization, and bring them together into accessible, interpretable programs. I am enabled to do this
largely because of new availability of autograd tools, that automatically generate gradients for
any given program (a key ingredient for optimization). In particular, I am using JAX [24]. With
JAX, any system that can be articulated as a purely functional python code can be automatically
differentiated. We can then use the function’s gradient to optimize the function’s inputs, and JAX
conveniently pairs with optimizers from the OPTAX library [25]. The performance of this system
is only viable because JAX also includes a just-in-time compiler that turns the whole system into
code that can run in parallel on high performance hardware (i.e. a GPU).

MAXL uses JAX as a basis to implement a Model Predictive Controller [26]. MPC controllers work
in much the same way as you and I do: it uses a simulation of the future to optimize future and
current control outputs. The classic example comes from driving: when we are entering a corner,
we know that we need to slow down before we turn. To pick a braking point, we use a mental
model of our car’s dynamics (how long it takes to slow down) to “simulate” (imagine) how long
it will take to come to the appropriate entry speed for the corner. With computational MPC, we
simulate and optimize control outputs over a horizon of up to a few seconds at each time step, but
only issue the immediate next control output to our system. For example in the solver that I have
implemented, I optimize 250ms of control outputs at a 4ms interval, every 4ms. MPC is slightly
more complex than other common controllers because it involves building system models, but
its flexibility makes it well suited to many tasks, probably the most popular of which is in robot
quadrupeds [27] quadrotors [28] and humanoid robots [29].

Most MPC researchers use software libraries for these tasks: CasADi [30] and ACADOS [31].
CasADi lets developers author symbolic representations of their system dynamics and cost func-
tions, the package then generates C code for evaluating derivatives and integrating dynamics
models. ACADOS is a solver that can directly use those C codes to minimize cost functions in
real-time. This follows a similar pattern to the one I am deploying with JAX, but in this case I am
using JAX both to define the system (using pure python functions) and solve the system (using
a JIT-compiled optimization step). The key difference is that the CasADi / ACADOS workflow
targets execution on embedded devices. It is probably much more efficient, but harder to update
with new models (requiring a more explicit compilation step).

MPCs are typically used for short-order optimizations, operating over time horizons around one
to five seconds. They usually run somewhere between 50Hz and 500Hz since the compute required
to solve them is intense. For longer horizons of control, the current best practice uses simulated
systems to train policy controllers [32] that can issue higher-level control commands. Policy con-
trollers are normally coupled with lower level, faster feedback controllers and classical controls
components like kalman filters, [33] is a particularely clear example of how all of these compo-
nents come together to produce performant controllers. Policy controllers are often trained with-
out gradients because it is hard to differentiate across long time spans, but recent work deploys
differentiable simulation to overcome this issue [34].

All told, optimization based control is a vast, complex discipline. I have not mastered any of it, but
the available tools have become sophisticated enough that I can generate a solver using my own
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models and deploy it in practice. Above all, this is a testament to the community of researchers
and engineers working together to advance the practice, who are committed to sharing repro-
duceable, useful tools with one another.

3.5 Modelling FFF Polymer Flows
Model based optimizations require models. Luckily there is a lot of interest in FFF printing in the
literature, and so the applied physics are quite thoroughly understood [35], [17]. I also provide a
simple drawing of the main phenomena in Figure 6, and an overview of the physics involved in
Section 3.3.a, with some more details in #sec-hidden-optimization.

Of particular relevance to this work is a line of research begun by TJ Coogan and David Kazmer,
who developed an instrumented extruder similar to ours in [36]. Filippos Tourlomousis takes
credit for bringing this idea to the CBA and implementing the first version of the hardware, and
I extend a design pattern developed by an FFF youtuber to implement the filament sensor [37]
(adding a feedrate encoder, and calibrating width measurements). Kazmer continues work to char-
acterize the dynamic behaviour of filament during extrusion in [38], which helped me to develop
the dynamics model I use in the current iteration of the FFF flow model. These works were also
fundamental to my work in [39] (rendered Figure 29 and Figure 30), where we combined online
model-building with parameter selection in a reduced space to print with unkown materials.

A selection of the literature disccusses performance limits to FFF printing, notably [21] discusses
absolute limits to print speeds based on nozzle thermodynamics and [40] models flowrates
through a hotend as a function of nozzle temperature. The focus of the work in this thesis is not
necessarily to push those limits, but to develop controllers that more routinely run at or near
those limits (pushing performance of existing systems).

Another selection studies the relationship between slicer settings and print performance
(strength, precision) [41]–[45], but these studies all operate in an outer loop around the state of
the art workflow - i.e. they optimize slicer parameters, whereas (as I discussed in Section 3.3.a)
these are a somewhat lossy abstraction over the as processed parameters (due to firmwares’ speed
scaling).

Researchers are also interested in modelling inter-layer weld strength [18], [46], which is a func-
tion of the weld’s thermal history (more time above the plastic’s glass transition temperature
equates to more diffusion of polymer chains across the weld), and the inter-layer pressure exerted
by the pressure during extrusion. It should be possible using the framework developed in this
thesis to describe those physics as an optimization target, for example adding to the solver’s cost
function a reward for maximizing weld temperature - but doing so would probably involve much
more complex simulation of the print as a whole, whereas my approach only considers shorter
time spans.

Despite all of this research, there is limited literature that combines rheological modeling with
online controllers and motion systems - except for [47]. They make significant progress in adapt-
ing online control to optimize extrusion during machine operation, using flow models fit from
line-laser scans in conjunction with servo control of the extruder motor in a hybrid system, elimi-
nating many extrusion defects like under- or over-extrusion. To compare with work in this thesis,
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our approach combines similar models for extrusion with more advanced models of machine mo-
tion and kinematics, which should yield overall improvements to print speed - taking the machine
system as a whole, whereas their work focuses mainly on the optimization of extruder commands.
Ours also integrates the additional loadcell and filament sensors, which allows us to bootstrap
models on previously unseen filaments.

I would also like to note that the proliferation of research in this domain is probably due to the
proliferation of accessible and often open-source designs and documentation of FFF printers, and
an active community of FFF enthusiasts online - this goes to show that efforts in building ex-
tensible systems architecture may enable similar proliferations of research for other digital fab
processes.

3.6 Modelling CNC Milling
Machining models will become important when I begin work in earnest on Section 5.3. Models
that predict cutting loads will be of particular interest, [48] and [49] (a CBA undergraduate re-
searcher who I mentored three years ago) are two theses that provide a good overview of simple
models for the same. Both outline relatively simple models that output radial and tangential cut-
ting forces as a function of straightforward geometric parameters (cutter size, cut depth, spindle
rpm and linear feedrate), with four coefficients to fit for cutting force and edge force coefficients,
each with tangential and radial coefficient respectively. Sharma shows that coefficients can be
estimated using data generated on-machine, using measured spindle power and force exerted on
the workpiece (a loadcell). This is a promising indication that I will be able to replicate his work
using my frameworks. Dunwoody follows a similar path and adds resonance measurements: he
uses a solenoid hammer to generate a step response of the tool, measuring the tools ‘ring’ using
an inductive probe as a displacement sensor. Using this system, he generates a stability plot across
spindle RPMs and depths of cut.

Resonance measurements are likely to be important for performant milling, as excitation at these
frequencies generate resonant chatter [50]. In [51], the authors develop a system that communi-
cates with a Heidenhein machine controller at 10kHz to detect chatter in real-time using motor
currents, and [52] develop a model-based adaptive controller to mitigate chatter and [53] imple-
ments a “machining digital twin” to optimize feedrates of a milling center in real-time to predict
and automatically prevent chatter. Finally, for a broader overview of machining dynamics, we also
have [54].

All told, there is great background in the literature to show that the proposed contribution in
Section 5.3 is viable. Resonances of the machine seem easy enough to measure, and most reso-
nances are under 1kHz, meaning that I should be able to sample fast enough to generate these
data. However, I will have to manage frequency domain systems representations alongside the
time domain representations that are dominant in path planning. I suspect that I can articulate
these in the cost function of my optimizers. The contribution in this thesis will be to implement
these systems in a manner that requires minimal intervention from the user, and that works to
automatically bootstrap models when new materials or tools are used. It will also be a strong
demonstration of the flexibility of the systems architectures developed in this thesis, to deploy
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on two very different machining processes, capturing and extending state-of-the-art practice in
each case.

3.7 Systems Architecture Background
The work in this thesis is enabled by a flexible machine control architecture that combines mod-
ular hardware with software. This model was originally formalized by [55] and [56] at the CBA
as Object Oriented Hardware. The CBA also has a history of developing small networks for inter-
device internetworking [57] and building modular robotics [58], [59].

Work on modular physical computing is active in the HCI community [60], [61] and has a long
history in STEM education [62], [63]. PyBricks [64] is an active project that deploys python inter-
faces on Lego modules. I made one contribution in this domain with Modular-Things [65] along-
side Quentin Bolsee and Leo McElroy, where we developed a new set of hardware modules and
tested their use in a machine building session at MIT. That work contained early prototypes of
OSAP (Section 5.4) and MAXL (Section 5.1); I also formalized some of MAXL’s design patterns
in [66], adding time-sychronized distributed trajectories as a design pattern for organizing motion
across modules.

Efforts are also ongoing to improve interfaces for digital fabrication machines, [67] and [68] de-
velop interactive machine interfaces in Grasshopper using a python script as an intermediary to
send GCodes to an off-the-shelf machine controller. In [69], computational notebooks are used
as an interface for machine workflows: their system also implements an intermediary software
object that communicates with off-the-shelf controllers using GCode, but presents a more useful
API to the notebook.

The Jubilee project [70], [71] is a machine platform that implements a modular tool-changer, and
has been successfully deployed by researchers to automate duckweed studies (a popular model
organism) [4] and to study nanoparticles [5]. Jubilee also uses an intermediary python object to
interface with an off-the-shelf GCode controller, and shows the value of integrating motion sys-
tems with application-layer scripting languages.

Work in this thesis aims to extend these efforts by providing lower level motion control inter-
faces in the same scripting languages, reducing distributed state in the overall control architecture
and making systems easier to debug and develop; consolidating configuration state was a topic
discussed during and NSF sponsored workshop that I attended on open source lab automation
tools [72] where we used Jubilee machines. OSAP also extends other modular physical computing
frameworks by enabling the use of a multitude of link-layers, whereas i.e. JacDac and Gestalt are
limited to custom embedded busses.

Object Oriented Hardware for machine control presents many practical challenges: control over
networks introduces timing overheads not present in digital controllers that add constraints to
control algorithms [73]–[75]. Some of these challenges can be overcome by distributing models
throughout a system, trading computation for bandwidth [76] - MAXL (Section 5.1) takes some
inspiration from this approach, allowing motors to incorporate simple local controllers that can
take-over in the event of network failures.
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Developing networks for real-time systems is itself a challenge, luckily there is well established
practice in this domain. In particular, I borrow a scheduling pattern from [77] and clock synchro-
nization patterns from Network Time Protocol [78] and high-performance counterpart [79]. I have
also studied simpler approaches from explicitly real-time domain [80].

4 Research Questions and Evaluations
4.1 Can We Replace Parameter Tuning with Model Building?
Advances in differentiable simulation and solvers have made it possible to refactor machine con-
trollers as online optimization routines, but it is still unclear how to put all of the constituent
pieces together. This raises a number of questions.

Firstly, we need to know how to architect our system so that we can connect enough com-
pute to run the optimization in real-time with embedded systems that realize those op-
timized outputs - OSAP (Section 5.4) is one half of my contribution in this regard, and MAXL’s
(Section 5.1) partitioning (using basis splines to transmit discrete parts of a path plan at a fixed
time interval) is the other. We also need to learn what kind of models are appropriate to use
in this context, balancing fidelity with simplicity. We also need to learn how to develop and fit
those models, in this work I propose adding instrumentation to machines directly, and building
bootstrap models using canned routines, but then improving them during machine operation. I
discuss resolutions to these questions for FFF in in Section 5.2.a, Section 5.2.b and Section 5.2.c,
though I am not yet sure exactly how to formulate the models that will be required for the CNC
Router proposed in Section 5.3.

A simple metric for evaluation that I will discuss in those sections is to measure how many input
parameters are required in order for the processes to work (comparing to state of the art CAM),
i.e. how much input is needed from a machine user in order to get up and running with a machine
and material.

The proposed optimizer also has clear performance metrics to measure: it should help machines
run closer to their maximum limits, minimizing time to run jobs and maximizing precision.

4.2 Can We Make Motion Control Modular and “Easy?”
I am also interested in developing this control approach in such a way that it is approachable
for machine builders to deploy on new systems. This raises some structural questions about how
we should represent controllers to machine developers - in particular, how they reconcile
their mental model of their machine’s kinematics with the controller’s own model. Can we gen-
erate these representations automatically, or at least tune them automatically? How do
machine builders debug their controllers, when misalignments are present, and how do
they tune and evaluate their machines’ performance? I propose evaluating MAXL in this
regard by running a workshop that I describe in Section 5.1.b.

I also want to see how modular we can make machine control. Success here would mean that
we could implement almost any kinematic system (or end-effector) using a small set of re-useable

33



components. To see whether or not MAXL and OSAP succeed, I can track the breadth of machine
systems deployed using the systems.

4.3 Can we Automatically Generate Control Interfaces from Hardware?
Machine building also involves the generation and use of software interfaces for hardware de-
vices. Making and maintaining these interfaces can be a pain in the state of the art, as I discuss in
Section 5.4.b. In developing OSAP’s network- and presentation-layer codes, I have been interested
to see to what extent can we automatically generate these intermediary representations
of modular hardware. In this work, I contribute automatic RPC tools for compile-time genera-
tion of interfaces to generic functions, and I am proposing to finish a long standing interface for
the development and debugging of systems-level interfaces, as I discuss in Section 5.4.d.

5 Expected Results and Contributions
Each of these contributions are built on top of OSAP (covered in Section 5.4). Here I am listing
them in the order of relevance to the research questions posed in the prior section.

5.1 MAXL: Model-Based, Modular Acceleration Control, Coordination
and Execution Library
MAXL is a machine control framework that I have authored over the course of my time at MIT. It
runs on top of the systems glue I have developed alongside it (OSAP, see Section 5.4) and consists
of a few key components:

• Firmware libraries that allow embedded device authors to expose functionality to motion plan-
ners.

• Software libraries that allow machine builders to author kinematic models of their machines.
• Software libraries that allow machine builders to author optimization-based solvers for their

machines.

MAXL’s contribution is to provide a generalizeable framework to control almost any machine
using a set of re-useable software modules. It presents motion control systems as assemblies of
functional blocks, where the aim is to allow machine developers to build controls systems from
modules that are each easy to comprehend, but whose various combinations can span a large
space of possible machine designs - as well as provide a proving ground for other systems de-
scribed earlier in this proposal, like automatically calibrated kinematic arrangements, or model-
based optimizations.

With MAXL, I contribute a system that answers many of the questions posed in the previous sec-
tion. It uses just-in-time compiling of JAX codes to run an online simulation of a given machine.
The simulation (generated using a receding horizon of control outputs) is differentiable with re-
spect to a cost function that defines the optimization. Any system that can be simulated using
an integrator written in python can be simulated and optimized, subject to compute performance
constraints.

In Figure 15 and Figure 16 below, I show some early results of the solver operating on a motion
system alone: because the MAXL solver can use a more nuanced motor model than off-the-shelf
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trapezoidal solvers, it manages a 15% increase in overall speed and produces a smoother velocity
plot.

Figure 15:  Here I compare a classical solver (using trapezoids, left) with MAXL’s model based
solver (right). The top of both columns show the equivalent motor models being used (these ef-
fectively represent the solvers’ understanding of the motors’ torque curves). In the middle are
velocity histograms of each solvers’ outputs, showing that MAXl’s outputs effectively move the
peak of the velocity distribution to the right (big number good, small number bad). The bottom of
each column renders the actual trajectory with a heatmap of resulting velocities at each position

on the path.
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Figure 17:  traps

Figure 18:  optim
Figure 16:  Here I show time-series plots of velocity for the trapezoidal (top) and MAXL (bottom)
solvers over a subset of the total interval. Velocity units are mm/sec. MAXL produces smoother
velocity plots, and eliminates instantaneous changes in acceleration. This should help to reduce

excitiation of machines’ resonant modes.

To span the partition between hardware and software, MAXL breaks motion into fixed-interval
components of basis splines. Devices are all time-synchronized using OSAP, which also helps to
manage systems-level configuration. This partition is what allows us to run the online optimizer
in a high-power compute environment (i.e. a laptop), alongside a flexible set of embedded devices
that operate motor controllers (and other output devices) and sensors.
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I provided an architectural overview of the scheme in Figure 1 and I go into more detail of these
models (and the solver) in the section below on the Rheo-Printer (Section 5.2). In particular, Fig-
ure 31 shows a screenshot of the solver’s visualizer.

Figure 19:  MAXL uses basis spline interpolation as a generic intermediate representation for mo-
tion. In this figure, I render a subset of spline control points that were generated by MAXL to

stream to motors during a print job.

Figure 20:  A 2D subsection of a basis spline, showing a stream of control points (PA … PG) and
the resulting curve.
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Equation 1 is the cubic basis-spline form that MAXL uses. 𝑡 spans a fixed interval, and the interval
is set at some integer value of microseconds that is a power of two, between 256us and 16384us.
Using these intervals means that the spline can be evaluated using fixed point arithmetic in em-
bedded devices. Basis splines have the helpful property that we can always add new points to the
end of a stream, meaning that at each interval we only need to stream one new position (whereas
i.e. a linear segment of similar length would require much more information). This works well for
motion because the splines’ own properties are well matched to moving systems [81]. Fixed-in-
terval tends to work because detail in motion tends to correlate to slower velocities (and so we end
up packing more points in intricate parts of the path). While using these splines has been hugely
productive for rapid machine development (their deployment means that I don’t have to modify
motor firmwares in order to develop new motion schemes or kinematic models, etc). Splines are
a lossy abstraction. They are not a direct interpolation, and at long time intervals they can result
in motion that deviates from planned positions. I am overdue to carefully quantify these losses
and their tradeoffs, and I should do so as I finish the PhD.

Where full-blown simulations are not required, MAXL also includes a classical trapezoid-based
motion solver that interfaces to the same set of modular hardware and firmware.

5.1.a Generation of Physical Machine Representations in MAXL
In the section below on OSAP (Section 5.4), I discuss how I automatically generate software in-
terfaces to machine systems. I use MAXL to attach physical meaning to these representations.

In the simplest sense, MAXL’s interfaces need to accurately reflect what will happen in the real
world when we move the motors on the x or y axes on our machines. This seems like a simple
problem, but it is pervasively difficult to debug, and leads to real trouble for CAM companies like
Autodesk, who have to interface to thousands of different machine vendors.
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Figure 21:  This small drawing machine has some nonlinear kinematics - the mechanism is one
common to robot dogs: we have two rotary actuators (A and B) linked in an arm, each controlled
by a motor that is rigidly mounted to the chassis. Kinematic arrangements like this can have
serious advantages: they reduce total moving mass, and they package well (keeping the robot
small while its work volume remains large). They can also be difficult to control, since mappings
between actuator coordinates (in rotations) and work coordinates can be complex; sometimes
there are not even closed-form solutions. In this thesis, I want to see how we can expose these
complexities of the machine controller to machine builders in a composable manner, to help them

more successfully build, tune and debug their kinematics.

Depending on the machine, this step alone (mapping from software-controlled actuators to real-
world space) can involve some tricky kinematic calculations, and even in simple cases (where
i.e. one motor moves one axis in a straght line), often warrants some calibration and correction.
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Figure 22:  Machines never go together exactly as their designers intend. XY stages are never ex-
actly perpendicular to one another, beds are never perfectly level with respect to XY travels, etc.
We can correct for these errors using the machine’s controller (as has become common practice),
but need to develop integrated metrology on each machine in order to do so. For FDM printers,
the z-axis is particularely sensitive to errors and so it is normally calibrated using a touch probe (I
use the loadcell already integrated for rheology). There are not general solutions for this problem,
but it is the kind of task that a controller which is well integrated with other optimization tools

(i.e. in python) is well suited to solve.

Most machine builders already have a good sense of how their machine will work: they can de-
velop a set of kinematic equations that describe their machine’s motion. However, fine tuning
these models is more difficult, and we normally use a combination of metrology and model re-
gression to do so.

While it is tempting to explore automated methods for both sides of this problem, in this thesis
I want to focus on the first step; how should we expose the kinematics module of our controls
architecture such that machine builders can easily test and verify their models against the real
world? The important thing to evaluate here would be machine builders’ experience of getting a
machine up and running using our controllers. An ideal system would be comprehendible, con-
sistent, and interrogateable. It is also typical that machine designers will have relatively complete
CAD designs of their hardware - our system should take advantage of that to build digital twins
that enable visual debugging of kinematic descriptions.

A well-matched kinematic description of a machine also has meaningful performance advantages,
since it would enable us to develop more complete digital twins of the dynamical system; i.e. al-
lowing for controllers to track the complete energy and inertial states of each component.
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5.1.b The Plotter Comp: Evaluating a Plenitude of Machine Kinematics
To evaluate MAXL, I want to co-host a Plotter Competition at MIT this January (2025). The format
will be based on a project I co-hosted with Ilan Moyer and Leo McElroy where six participants
each developed a pen-plotting machine over the course of an intensive two-day workshop, using
an early version of MAXL.

Figure 23:  A series of plotters developed by participants in a workshop that I co-hosted at the
CBA with Ilan Moyer and Leo McElroy. Participants were each experienced machine builders,
but not experienced controls engineers. We were able to use MAXl to develop working kinematic

models for each of these machines.

During that workshop, I personally helped each participant to control their machine using the
MAXL and OSAP libraries I have authored to date. In the next workshop, I want to see if machine
builders themselves can successfully use MAXL to develop a control system for their machines.
To do this, I will document the MAXL python library and two working machine examples, and
provide a set of ready-to-run (but otherwise unconfigured) controllers. I will interview machine
builders before, during and after the workshop to garner their feedback on MAXL’s implementa-
tion, and their experience using it.

Evaluation would then be based on machine builders’ success in controlling their machines - first,
whether they are able to successfully develop and debug their kinematic models using MAXL, then
whether they are able to tune and improve those models using feedback (or heuristics). MAXL
also provides interfaces tools that allow machine-builders to inspect their systems, using velocity
plots, histograms, and other time-series data directly from the controller - I will be curious to see
if anyone can use these successfully to improve their machine.
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Evaluation would also be based on the heterogeneity of machines developed during the workshop,
and other quantitiative metrics like controller performance (which depends also on networking
performance via OSAP), and reliability.

I have some stretch goals for the workshop, listed below.

(1) The development of an integration of machine builders’ CAD models with MAXL to complete
it’s internal model of machine motion with a virtual render of the machine (a digital twin) to
aid in controller debugging. I prototyped one such system for the Rheo-Printer (see Figure 26),
but only on an ad-hoc basis.

(2) For example, it should be possible to use time-series information from closed loop motor con-
trollers to ascertain how well the kinematic models provided are fitting to reality. It would be
interesting to learn how well this can work, and to what extent it could be a helpful tool for
machine builders. For example, a bearing that is slightly misaligned during machine assembly
may double or triple the friction in one of the machine’s axes. This would show up in time-
series data from motor controllers, and that could be fed back to designers. A robust digital
twin would also be able to inform designers of where their performance bottlenecks are aris-
ing: highlighting an undersized motor for example.

(3) It should also be possible to deploy computer vision systems to automate kinematic systems
description: build a machine, and then use video to determine the system of equations that
govern its motion. While automatic, that approach may generate solutions that are computa-
tionally intense (making them unsuitable for use in a real-time controller) - that is another in-
teresting question that I would hope to visit, but can’t promise to resolve. At best, the controls
architecture developed in this thesis will enable other researchers to work more confidently
on those problems.

5.2 The Rheo-Printer
The Rheo-Printer is an FDM 3D printer that combines much of the work discussed in this thesis.
It uses online instrumentation to build models of its own motion systems and process physics,
and then deploys those models in a controller that combines motion optimizations with process
optimizations in one online loop. There are a few distinct contributions / results of note in this
project.
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Figure 24:  The Rheo-Printer is an FDM 3D Printer that deploys the controllers I have developed
in this thesis, and includes instrumentation for flow- and motion model building.
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Figure 25:  The printer’s hotend features a loadcell between the hotend and extruder motor (which
allows us to measure nozzle pressure), and a filament sensor that measures linear flowrate as well
as filament thickness. The controls are assembled from modular electronics and connected using

OSAP, controlled using MAXL.

5.2.a Deploying MAXL to Generate Time-Series Data
My control approach requires that machine and material models be fit to the particular machine
they are deployed on, and this means that MAXL and OSAP need to enable us to run data collec-
tion routines. It also involves the development of those collection routines.

For this task, I lean on OSAP’s time synchronization and generate time-stamped data streams
from sensors embedded in the machine. These let me generate detailed time-series datasets that
are reconciled to the machine’s real motion trajectories. Those can then be used to fit models,
using optimizers not dissimilar to the one which is used during online control (i.e. gradient-based
search).
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Figure 26:  Click here for a video. Earlier in Figure NUM we looked at data collection for steady-
state FDM model building, in this figure we see a screenshot from a data collection routine on the
Rheo-Printer where dynamics data are being collected form the loadcell and filament sensor, time-
synchronized to the motion controller’s states. At the time of writing, we can collect dynamical
flow data from the first layer only due to our relatively naive computer vision setup - a major part
of the next step in this research arc is to outfit the printer such that we can collect high frequency

data at each layer.

5.2.b Experimental Designs for FFF Model Generation
A question posed earlier had to do with how to safely generate models of machine compo-
nents for use in an online optimization: i.e. running non-destructive tests that are explicative of
where failure would occur, or that let us operate machines near their limits without exceeding
those limits.

A trend emerging at this point in the research is to use simple models to ‘bootstrap’ a new ma-
chine or process, and then use time-series data generated from the operation of the machine using
those models to fit or generate higher fidelity models.

45



Figure 27:  Test data from an experiment for steady-state flow data - which was fit to the model
in FIGURE ABOVE. Developing this test routine was the key ‘invention’ for that initial piece of
work on parameter reduction: the routine allowed us to effectively test the workable range of
the hardware without exceeding that range (and i.e. breaking / clogging the nozzle or shredding

filament).

5.2.c Model Selection for Online Optimization of the FFF Process
Related to overall compute performance, we need to learn what fidelity of model is required for
our real-time optimization task. Candidates include classical models (that are hard to build but
easier to fit, and faster to run), various flavours of neural network (which are easier to train but
slower and less relate-able to underlying physics), and even particle simulations.
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Figure 28:  Here I show the littany of of model gathering and fitting techniques that I tested as
I developed the Rheo-Printer, as well as a shared functional representation for the differentiable
simulation (simple integrators) and optimizer. I also evaluated two solver architectures, and two

different approaches for deploying synchronized motion segments.

Listing 6:  At the time of writing, models are defined in my motion controllers by writing author-
ing integration functions. Provided that these are purely functional, they can be combined easily
into the gradient-descent based optimizer that I have developed with JAX [24], a differential pro-
gramming library. This integrator here describes how the Rheo-Printer’s position changes over
time, depending on commanded motor torques, it is ‘half’ of the system that we want to optimize

in order to operate the machine.

def integrate_pos(torques, vel, pos, del_t):
    params_torques = jnp.array([2000, 1000])  # per-axis motor effort to torque 
    params_frictional = jnp.array([2, 2])     # per-axis damping 

    torques = jnp.clip(torques, -1, 1)
    torques = torques * params_torques

    acc = torques - params_frictional * vel 
    vel = vel + acc * del_t 
    pos = pos + vel * del_t 

    return acc, vel, pos
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Listing 7:  This integrator comprises the ‘other half’ of the problem we want to optimize when we
run the Rheo-Printer: it describes how flow out of the printer’s nozzle evolves over time, given

input torques at the extruder motor.

def integrate_flow(torque, inflow, pres, del_t):
    k_outflow = 2.85        # outflow = pres*k_outflow 
    k_tq = 1                # torque scalar, 
    k_pushback = 10         # relates pressure to torque 
    k_fric = 0.2            # damping 

    torque = np.clip(torque, -1, 1)

    # calculate force at top (inflow) and integrate for new inflow 
    force_in = torque * k_tq - inflow * k_fric - np.clip(pres, 0, np.inf) *
k_pushback
    inflow = inflow + force_in * del_t

    # outflow is related to previous pressure, simple proportional model for now
    outflow = pres * k_outflow

    # pressure rises w/ each tick of inflow, drops w/ outflow, 
    pres = pres + inflow * del_t - outflow * del_t

    # that's all for now?
    return outflow, inflow, pres

The models that I am using at the moment (both of which are written down above, in the form in
which they are integrated into the optimizer) are relatively simple: the motion model is essentially
just a damped inertial system, and the extruder model is isothermal and uses a linear relationship
between pressure and flow, even though we know from steady state data that this is not the case
(see the figure below). These simple models are enough to capture the most critical dynamics, and
even still are a step above the heuristics that off-the-shelf machine controllers use. The next step
of my research plan involves outfitting the 3D Printer with data acquisition tools that will let us
collect thousands of times more data (at hundreds of times higher frequency), so that we can fit
more advanced models (and build them incrementally).
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Figure 29:  I developed this steady-state model for nozzle flow vs. nozzle pressure (across a range
of temperatures) using the Rheo-Printer’s instrumentation. It captures some complex rheology,
but only for steady-state flows (which are rare during printing). In this figure, we see the model
fit for PLA using a 0.4mm nozzle (at left) and a fit for ABS using a 0.8mm nozzle (at right). Red
dots are where off-the-shelf parameters (heuristics) suggest the material should be used, black
marks are where our parameter-picking algorithm suggests they should be used (ours normally

improves flow).

𝑃 = (−𝑐𝑄+𝑑 + 1)𝑇+𝑒𝑄
2+𝑓 (2)

Equation 2 is the model (Figure 29) that I developed to fit steady-state flow data (Figure 27) across
an FFF extruder’s entire operating range. Here, 𝑃  is a prediction of nozzle pressure given tem-
perature 𝑇  and flowrate 𝑄. 𝑐, 𝑑, 𝑒 and 𝑓  are parameters that were fit using a scipy [82] optimizer.
At the time of writing, my dynamics model for extrusion (Listing 7) ignores this complexity, but
future work should merge models like this (which describes flow, given pressures) with the dy-
namics model (which describes pressure generation as a function of extruder torques and filament
compression). I also experimented with using neural networks to fit time-series extrusion data,
but found it difficult to generate a robust model with limited data.

Also of curiousity is whether these models could be transferrable across materials or machines,
or even processes. For example, it is likely that motion control models can be very simple and
easily ported from machine to machine, but process models may need to be re-trained (or fit) for
any new machine, material, or even for small changes of a machine (such as a nozzle diameter
change or the ilk).

5.2.d Parameter Reduction via Online Optimization across Flow and Motion Models
This is a core contribution: I show that we can control the printer using a novel scheme that re-
places heuristics for flow and for motion with models for each, that are simultaneously optimized
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using an online, receeding horizon approach. This vastly reduces the number of input parameters
required in order to print a part, because it replaces parameters with models across both aspects
of the problem (material / process dynamics and motion dynamics).

Figure 30:  In earlier work, I showed that even steady-state models (see Figure 29) can be used to
reduce FFF printer parameter space; these benchy’s⁶ [83].

⁶The “benchy” boat has become the de-facto test print in the FFF development community, probably because it
contains a swath of difficult to print features (like overhangs and bridges), is small enough to print quickly, and
because it is cute.
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Figure 31:  This is a plot generated from the online optimizer I have written that solves for the
Rheo-Printer’s motion system and polymer flow simultaneously, using models as shown in List-
ing 6 and Listing 7. At left, we see the simulated trajectory, with arrows color-coded to resulting
velocity at each time step and with target extrusion (light grey) with resulting extrusion (dark
grey). This simulation is differentiable with respect to a cost function that describes optimal con-
trol outputs as those which maximize printer velocity while minimizing errors. At right, various
output plots from the same simulation; errors (top), solver gradients, solver torques (middle) and
velocities (bottom). The solve is done over a quarter-second receding horizon window, with one

time-step’s control outputs (4 milliseconds long) issued each cycle.

The approach shares much in common with Model Predictive Control, which is a common ap-
proach to control for dynamic robots [27] - here we show that when we use models that are devel-
oped in situ, the same pattern can be applied to machine processes.

I will evaluate the success of this contribution by comparing the printer’s dimensional perfor-
mance, as well as its speed, to a converntional workflow and machine. I will also compare the
amount of user input required for successful prints using this method vs. using traditional work-
flows.

5.2.e Finishing the Rheo-Printer
My work so far on the printer is promising: I have generated models extrusion using data gen-
erated in situ and merged them with motion models to generate an MPC-based optimizer that
is performant to deploy in real-time. To finish the project, I need to merge that controller with
the hardware and test its real-world performance. I also want to improve the fidelity of the mod-
els used for extrusion by generating new flow data at each successsive layer. To do this, I will
complete a hardware update (Figure 32) that uses a line laser and downwards-facing camera to
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generate a height map of each layer (similar to a system deployed by [47]). Since I have access to
time-and-space synchronized motion information, I should be able to reconcile these scans with
historical machine states and generate high-frequency time-series data.

Figure 32:  A draft of an updated design for the Rheo-Printer hotend that incorporates a line laser
and downward facing camera to generate higher fidelity flow data after each print layer.

5.3 A Smart CNC Router
Besides FFF, ‘2.5D’ CNC Routing (to produce mostly-flat parts) is probably the second most-com-
mon form of Digital Fab: with it, you can make furniture, project enclosures, mechanisms, other
machines, quadcopter frames, etc.

Routing poses many of the same challenges as FFF printing: users need to hand-tune parameters
for each new material and tool that they want to use. To demonstrate the flexibility of the con-
troller architectures presented in this thesis, I want to extend MAXL to perform online optimiza-
tion of process and motion models for CNC Milling. This will involve building models of cutting
force, fitting them to time-series data, and bringing them online with motion models already de-
veloped in the thesis.
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Figure 33:  A completed design of a simple 2.5D milling machine. The hardware uses many of
the same design patterns as those present in the Rheo-Printer, but is laid out for processing thin

materials.

Whereas other contributions mentioned in this proposal are mostly complete, this project is
mostly new. I have built milling machines in the past, and I do have a complete design for the sys-
tem, but it will require that I develop one new circuit (to control the spindle, and provide feedback
from the same), and that I develop and fit some new models. Milling is also less forgiving than
FFF printing in practice, so I expect that debugging will be slightly more challenging. However,
I think the challenge is manageable, and I think that showing portability across processes is an
important feat for the thesis.

5.4 OSAP: an Open Systems Assembly Protocol
The headline contributions in this thesis are underpinned with a distributed systems architecture
that I have developed during my time at the CBA that I call OSAP: an Open Systems Assembly
Protocol. OSAP is based on a thread of research that goes back tens of years in the CBA’s history
based on object oriented hardware, that pairs modular hardware with modular software. I aimed to
expand this architecture to span a broader heterogeneity of components and network configura-
tions, to more easily add new firwmares and software integrations, and to enable the development
of inter-device data flows (as opposed to star-shaped controller topologies).

I developed OSAP with the high-level goal of enabling asynchronous collaboration between ma-
chine developers, based on interoperability and modularity of functional components, noting how
the same principles have driven the runaway success of open source software efforts [84].

I reason that if I can show that high-performance machine controllers can be built using modular,
generalizeable parts (based on a principle of interoperability via protocol specification), others
will be able to take components of this work and extend it.
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Figure 34:  A diagram of how users of Open Source Software developers interchangeably use com-
ponents from a commons of functional modules, and develop and publish their own. Software has
many “built-in” tools for modularity, but hardware tends to resist generalization. Modular hard-
ware approaches try to bridge this gap, to enable the development of a commons of re-useable

devices.

OSAP is essentially an implementation of the Open Systems Interconnect model [85] that is guided
by the end-to-end principle [86], both of which were foundational during the invention and pro-
liferation of the internet, but neither of which have been rigorously followed in the internet’s
development [87]. Indeed, machine-scale modular hardware systems (of the kind we deploy in
this thesis) are deployed on a heterogeneity of different network links and transport layers [88]
whereas the internet is dominated by only a few (TCP, Ethernet, WiFi). The OSI model was meant
to enable broad connectivity across heterogeneous link layers, but in practice the field of inter-
networking in hardware (and in industrial machine systems in particular) is fractured.
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Figure 35:  A simplified OSI layering, as implemented in OSAP. Each layer presents well defined
software APIs to surrounding layers, in an effort to make components of the system easy to in-
terchange: for example one of the challenges posed by modular hardware systems is that devices
typically deploy on heterogeneous link layers (many choose CANBus, others use EtherCat, while
simple devices may use I2C or UART based links). OSAP makes an effort to allow for combinations

of link layers in any given system.

With OSAP, I am not aiming to introduce new standards (which should take more time, and more
careful planning and democratic input than I can muster) - I want simply to show that it is possible
to build performant machine systems using low cost modular components that can each them-
selves be re-purposed in multiple ways, that provide interfaces that are consumable at multiple
levels (network links, RPCs, etc), and that can be connected over a heterogeneity of data link lay-
ers. To evaluate OSAP, I will measure its performance in terms of runtime overhead and program
size overhead. I will also evaluate its flexibility in deploying across heterogeneous link layers.
Qualitatively, I will be able to evaluate where OSAP’s structures hampered me, and where they
were helpful while deploying the other systems in this thesis.

5.4.a (Simple) Distributed Clock Synchronization
One of the key services that OSAP provides is clock synchronization, which is used as a basis
for motion control and for time-series data collection (to build models). Since other clock sync
algorithms are complex and consume large amounts of program memory, I developed a simple
version from scratch.
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Figure 36:  Here I show results from a clock synchronization test. The test polls eight devices (con-
stituting a subset of the Rheo Printer’s controller) as the distributed clock sync algorithm settles
each devices’ clock skew with respect to the chosen grandmaster (in this case, the laptop running
the test). In the top plot, we see measured errors (these are noisy because packet round trip is not
always the same, a key issue with packetized clock sync) - errors stay within +/- one millisecond
during the duration of the test, and improve over time. The bottom plot shows each device’s clock
skew as calculated and updated by the distributed controller. These settle eventually, but reducing

their oscillation is something I would like to investigate.

The algorithm is essentially a distributed diffusion routine: each device requests time stamps over
all active links, picks the best source, and then skews its own clock in order to minimize errors.
The algorithm works well enough for me to complete all of the tasks in this thesis, but I would
like to evaluate it more rigorously, since high performance synchronization is a requirement of
advanced control systems.

5.4.b Automatic Generation of Control System Components and Representations
In [84], [89] [lerner2002some] and [90], operations and economics researchers studying the suc-
cess of Open Source Software note two key properties: existing modules should be easy to inte-
grate into new systems, and new modules should be easy to generate and add to the ecosystem.
Basically, using components of the ecosystem should be straightforwards, and generating new
components should be just as simple. [91] in particular notes that “In order for a project to be
susceptible to sustainable peer production, the integration function must be either low-cost or itself
sufficiently modular to be peer-produced in an interative process.”

The controllers developed in this thesis are distributed systems comprising both low-level
firmwares and high-level planners / controllers. For those to work together, they need properly
articulated software / network interfaces, i.e. they need to be easy to integrate with one another.
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Since I have been building all of the modules themselves, it also serves me well if they are easy
to generate; I have had a good toy problem for the broader context.

In the state of the art these integrations are maintained by hand: distributed systems are ‘authored’
twice (once during setup and again as a reciprocal code structure). GCode is effectively the same:
new codes are added in firmware (by machine control developers) which are then written down as
specs and communicated to CAM developers. In the Appendix on GCode Representations I work
up an example of how one GCode is authored in firmware, then as a specification, and how it
is used in a program (to compare to the workflow in the listings below). The inevitable misalign-
ments that arise cause hard-to-diagnose errors, and the duplication of efforts wastes time during
machine development (and makes it more costly to iterate or udpate designs).

In OSAP, I contribute presentation layer codes that automatically generate these intermediary
representations. These codes allow firmware developers to turn any given function call on their
device into an RPC (remote procedure call), a common type of interface in distributed systems.
RPCs are effectively functions that are implemented on remote devices that can be called from
some other device. The following listings work through an example of using one of these RPCs.

Listing 8:  An example of a target function, implemented in firmware on a modular device, that we
want to generate an interface for. To deploy one, the firmware author can use this BUILD_RPC()
macro to rollup any given function (with some limits on argument and return types) as a remotely

callable (and discoverable) function.

float readAvailableVCC(void){
  const float r1 = 10000.0F;
  const float r2 = 470.0F;
  // it's this oddball, no-init ADC stuff, 
  // teensy is 10-bits basically, y'all 
  uint16_t val = analogRead(PIN_SENSE_VCC);
  // convert to voltage, 
  float vout = (float)(val) * (3.3F / 1024.0F);
  // that's at 10k - sense - 470r - gnd, 
  // vout = (vcc x r2) / (r1 + r2)
  // (vout * (r1 + r2)) / r2 = vcc 
  float vcc = (vout * (r1 + r2)) / r2;
  return vcc; 
}

BUILD_RPC(readAvailableVCC, "", "");
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Listing 9:  The ‘proxy’ code for the function in Listing 8. I automatically authored author these
using a script that uses OSAP’s network-layer discovery routines in conjunction with the RPC
discovery system (in the presentation layer). Even these interface can be generated at runtime,
proxy codes are useful for scripting because they enable IDE autocomplete features. I include type

hints as well, since type information can be very helpful when authoring scripts.

# auto-generated proxy, 
class HBridgeProxy:
  # ...
  async def read_available_vcc(self) -> float:
      result = await self._read_available_vcc_rpc.call()
      return cast(float, result)
  # ...

Listing 10:  An example application code that deploys the proxy shown in Listing 9 to interact
with the firmware from Listing 8, following the object oriented hardware paradigm mentioned
earlier. This small example is a simple script that I wrote to test the function of a generic H-Bridge

module.

async def main():

    system_map = await osap.netrunner.update_map()

    hbridge = HbridgeSamd21DuallyProxy(osap, "hbridge_dually")
    await hbridge.begin() 

    # turn it on 
    print("... request voltage")
    await hbridge.set_pd_request_voltage(15)

    print("... await voltage")
    while True:
        vcc_avail = await hbridge.read_available_vcc()
        print(F"avail: ${vcc_avail:.2f}")
        if vcc_avail > 14.0:
            break 

    print("pulse...")
    for _ in range(100):
        print("...")
        await hbridge.pulse_bridge(2.0, 1000)
        await asyncio.sleep(1.75)
        await hbridge.pulse_bridge(-1.0, 50)
        await asyncio.sleep(1)

    print("... done!")
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The BUILD_RPC macro uses c++ template programming to generate a wrapper class around the
provided function that provides network handles to it, that enables other devices on an OSAP
network to query the function for its signature (to learn its name, return type, and argument
types), and to call it remotely. OSAP also includes a network discovery routine (to find, name, and
address modular devices). Using these two together, we can automatically generate a the interface
codes (proxies) required to interface with whatever hardware is connected on the network.

To evaluate success on this front, I develop and deploy automatic proxy generation codes in the
machine systems discussed in this thesis. I will also use them with a group of machine builders
in the plotter comp to generate motion systems. These interfaces can be evaluated quantitatively
for performance at runtime (incurring minimal compute or space overheads) and at compile time
(minimal overhead program size), and they can be evaluated qualitatively on many fronts:

(1) They should be able to describe most of the breadth of descriptions possible with ‘normal’
programming (i.e. most common data structures).

(2) They should be consistent, reliable and require minimal programming overhead (burden on
the programmer, not the computer) to deploy and ingest.

(3) They should be flexible across many use-cases.
(4) They should be descriptive enough so that they can be used with little documentation (or

should contain accomodation for documentation).
(5) They should be easy to interrogate and modify: where the interface inevitably break down, or

a lower-level of description is needed, that should be available.

5.4.c A Set of Re-Useable Hardware Modules
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Figure 37:  I have been developing this re-useable kit of modular circuits and firmwares over the
course of my time at MIT. With the most recent set of these (pictured here), I focused on re-use-

ability of individual circuits.

I built all of the circuits that run the systems in this thesis, and count them as a contribution. With
these circuits, I want to provide an example of how small, re-useable hardware modules can be
reconfigured across many use-cases without incurring vast size, power and complexity overhead.
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Figure 38:  Here I show an interface that this set of circuits uses, that I call a backpack. This is a
GPIO interface that allows circuits to connect to a broad set of physical communications layers.
This means that I can build (a) a set of modular circuits and (b) a set of modular PHYs, and rapidly
combine them depending on the context rather than filling out the AxB matrix of unique circuit

designs.

Figure 39:  A hub circuit that lets us combine multiple PHYs in the same system, and readily pass
messages between any given device. Because of OSAP’s flexibility, the hub is not only a message

passing device, we can impelement some components of our controllers on it.
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5.4.d A Systems Development Environment
From Figure 1 and other discussion, it is clear that the systems deployed in this thesis are (1)
always distributed and (2) sometimes messy. Structurally, they are all graphs, but I do not have a
tool to visualize them as such. I would like to build a tool to do so.

Figure 40:  This is a screenshot from the development environment UI that I implemented during
my masters thesis [92]. The system was functionally similar to work presented in this thesis, albeit
of lower quality systems design. The graph visualizer was nonetheless a promising tool, allowing

users to co-ordinate data-flows across all layers in the system.

A graph visualizer and editor would let systems developers quickly debug which hardware mod-
ules are connected, inspect their APIs, and build low-level data streams between devices. I have
built a similar system in the past, but made the mistake of over burdening the graph representation:
programs there had to be described entirely as graph entities. In an updated version, I would like
to be able to interchangeably use scripting and graphs. I suspect that graph representations will be
useful for low-level configurations, but that high level orchestration will take place using scripts.

I plan also to include all of the graph editing API as script elements, meaning that a machine will
be able to configure its own low-level systems; I anticipate that this may be useful for machines
that need to alter their configurations during runtime, such as tool-changing systems.
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6 Timeline
I have just over six months to complete all of the work outlined in this proposal. I believe that most
of the hard work is already behind me - this includes developing the core optimization framework,
the networks used to deploy it, and much of the hardware that I will use for the final evaluation.
The printer prints, and MAXL controls machines. However, I have still not closed the big outer
loop to show that MAXL can iteratively develop and then deploy models as it works. There is also
some polish required for MAXL before I think it will be ready for the proposed plotter comp.

Figure 41:  A gantt chart outlining my plans from now until my target graduation date, on the
Fall degree list in 2025.

I am proposing to organize my time in three sprints: one to finish MAXL and deploy it for the
plotter comp, another to finish the printer and write it up for a journal like Additive Manfuactur-
ing, and a final sprint to map the same strategies to CNC Milling. The latter of these three is where
the most questions are; I am not sure yet how best to capture important milling phenomenology.

In the final stretch, I will also write-up and formalize my evaluations of system components within
OSAP. Writing has been a good organizing activity, and I hope that I can continue to write the
thesis as time progresses - this should also keep me away from side quests. I think that this pro-
posals’ ~ fourteen thousand words should provide a good head-start for the framing sections of
that document, and the papers I plan to write along the way detailed dives into each subsection.

7 Resources Required
The CBA is exeptionally well resourced, and I have everything I need to complete the tasks I have
described in this proposal. This includes our own digital fabrication equipment that I use to build
machines, the funding to have new circuits manufactured (although I have already finished most
of these), and to purchase other parts like sensors, motors, etc.

8 Conclusion
I am proposing to show that machine systems can be developed using modern, modular ap-
proaches to control, in contrast to the pervasive use of an antiquated format. In the course of
which, I aim to show that we can use models instead of parameters to operate these machines, and
that these models reduce the brainpower required to successfully operate and build them - as well
as help them to out-perform older approaches.
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